echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Analysis of Catalytic RNA Structure and Function by Nucleotide Analog Interference Mapping

    Analysis of Catalytic RNA Structure and Function by Nucleotide Analog Interference Mapping

    • Last Update: 2021-03-01
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    Nucleotide analog interference mapping (NAIM) is a quick and efficient method to define concurrently, yet singly, the importance of specific functional groups at particular nucleotide residues to the structure and function of an RNA. NAIM can be utilized on virtually any RNA with an assayable function. The method hinges on the ability to successfully incorporate, within an RNA transcript, various 5′-
    O
    -(1-thio)nucleoside analogs randomly via in vitro transcription. This could be achieved by using wild-type or Y639F mutant T7 RNA polymerase, thereby creating a pool of analog doped RNAs. The pool when subjected to a selection step to separate the active transcripts from the inactive ones leads to the identification of functional groups that are crucial for RNA activity. The technique can be used to study ribozyme structure and function via monitoring of cleavage or ligation reactions, define functional groups critical for RNA folding, RNA–RNA interactions, and RNA interactions with proteins, metals, or other small molecules. All major classes of catalytic RNAs have been probed by NAIM. This is a generalized approach that should provide the scientific community with the tools to better understand RNA structure–activity relationships.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.