echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Assessment of Antioxidant Activity of Eugenol In Vitro and In Vivo

    Assessment of Antioxidant Activity of Eugenol In Vitro and In Vivo

    • Last Update: 2020-12-03
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    Reactive oxygen species are implicated in many human diseases and aging process. Much of the evidence is based on experimental data indicating increasing rates of lipid peroxidation in disease states and the ameliorating effects of antioxidants. It is becoming increasingly evident that the natural antioxidants, which have phenolic structure, play an important role in protecting the tissues against free radical damage. Eugenol (4-allyl-2 methoxyphenol) is one such naturally occurring phenolic compound. The antioxidant activity of eugenol was evaluated by the extent of protection offered against free radical-mediated lipid peroxidation using both in vitro and in vivo studies. The in vitro lipid peroxidation was induced in mitochondria by (Fe(II)-ascorbate) or (Fe(II) + H
    2
    O
    2
    ). The lipid peroxidation was assessed colorimetrically by measuring the formation of thiobarbituric acid reactive substances (TBARS) following the reaction of oxidized lipids with TBA. Eugenol completely inhibited both iron and Fenton reagent-mediated lipid peroxidation. The inhibitory activity of eugenol was about fivefold higher than that observed for α-tocopherol and about tenfold less than that observed for BHT. The in vivo lipid peroxidation-mediated liver damage was induced by administration of CCl
    4
    to rats. Eugenol significantly inhibited the rise in SGOT activity and cell necrosis without protecting the endoplasmic reticulum (ER) damage as assessed by its failure to prevent a decrease in cytochrome p450 and G-6-phosphatase activity. The protective action of eugenol has been found to be due to interception of secondary radicals derived from ER lipids rather than interfering with primary radicals of CCl
    4
    (

    CCl
    3
    /CCl
    3
    OO

    ).
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.