echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Covalently Linked Deoxyribonucleic Acid with Multi-walled Carbon Nanotubes: Synthesis and Characterization

    Covalently Linked Deoxyribonucleic Acid with Multi-walled Carbon Nanotubes: Synthesis and Characterization

    • Last Update: 2020-12-17
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    In this chapter, a multi-step protocol for covalently linking functionalized multi-walled carbon nanotubes (MWCNT) to deoxyribonucleic acid (
    DNA
    ) oligonucleotides is provided. X-ray photoelectron spectroscopy (XPS) is used to characterize the initially formed amine-terminated MWCNTs, to which DNA is covalently anchored. Atomic force microscopy (AFM) investigation of the DNA-MWCNT conjugates reveals that the chemical functionalization occurs at both the ends and sidewalls of the nanotubes. The described methodology represents an important step toward the realization of DNA-guided self-assembly for carbon nanotubes.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.