echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Determination of In Vivo Nitric Oxide Levels in Animal Tissues Using a Novel Spin Trapping Technology

    Determination of In Vivo Nitric Oxide Levels in Animal Tissues Using a Novel Spin Trapping Technology

    • Last Update: 2021-03-05
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    It has been established that microdialysis ensured by the passage of aqueous solutions of Fe
    3+
    complexes with
    N
    -methyl-
    d-glucamine dithiocarbamate (MGD ) through fine dialysis fibers permeable for compounds with molecular weights below 5 kDa. These fibers can be implanted into heart, liver, and kidney tissues, enabling effective binding of Fe
    3+
    –MGD complexes to nitric oxide generated in interstitial fluids of narcotized rats in vivo. Subsequent treatment of dialyzate samples (60 μL) with sodium dithionite favors conversion of newly formed diamagnetic NO–Fe
    3+
    –MGD complexes into electron paramagnetic resonance-detectable NO–Fe
    2+
    –MGD complexes. The basal levels of NO determined from the concentrations of the complexes in the respective tissues are similar (1 μМ). The microdialysis data suggest that treatment of rats with a water-soluble analogue of nitroglycerine or a dinitrosyl iron complex with thiosulfate induces a long-lasting (>1 h) increase in the steady-state level of NO in animal tissues. This novel technology can be used for comparative analyses of production rates of NO and reactive oxygen species when using iron–dithiocarbamate complexes and spin traps for reactive oxygen species, respectively.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.