echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Efficient Macromolecular Crystallization Using Microfluidics and Randomized Design of Screening Reagents

    Efficient Macromolecular Crystallization Using Microfluidics and Randomized Design of Screening Reagents

    • Last Update: 2020-11-29
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    Microfluidic technologies enable a relatively new approach to macromolecular crystallization, but offer several significant advantages over more traditional techniques. Microfluidic devices provide significant savings in the amount of material required to complete a set of experiments, although recent innovations with vapor diffusion and microbatch methods have also greatly reduced their material requirements. When compared with these other methods, microfluidic approaches still consume 5–100� less material. In addition, comparisons in one set of experiments suggest that microfluidic free-interface diffusion may also offer substantially higher success rates than sitting drop vapor diffusion. Microfluidic methods also provide opportunities for experimental strategies involving testing multiple samples in parallel. When combined with randomized design of screening reagents, microfluidic devices provide a highly efficient method for sampling crystallization space. Commercial microfluidic crystal lization chips have been in circulation for a number of years now and stable protocols for their use, tips and tricks, and data on their success and failure are now available.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.