echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > High-Resolution Measurements of Cyclic Adenosine Monophosphate Signals in 3D Microdomains

    High-Resolution Measurements of Cyclic Adenosine Monophosphate Signals in 3D Microdomains

    • Last Update: 2020-12-24
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    A large number of hormones, neurotransmitters, and odorants exert their effects on cells by triggering changes in intracellular levels of cyclic adenosine monophosphate (cAMP). Although the effector proteins that bind cAMP have been identified, it is not known how this single messenger can differentially regulate the activities of hundreds of cellular proteins. It has been clear, for some time, that compartmentation of cAMP signals must be taking place, but the physical basis for compartmentation and the nature of local cAMP signals are mostly unknown. We present here a high-resolution method for measuring cAMP signals near the membrane in single cells. Cyclic nucleotide-gated (CNG) ion channels from olfactory receptor neurons have been genetically modified to improve their cAMP-sensing properties. We outline how these channels can be used in electrophysiological experiments to measure accurately changes in cAMP concentration near the membrane, where most adenylyl cyclases reside. We also describe how the method has been employed to dissect the roles of diffusion barriers and differential phosphodiesterase activity in creating distinct cAMP signals. This approach has much greater spatial and temporal resolution than other methods for measuring cAMP and should help to unravel the complexities of signaling by this ubiquitous messenger.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.