echemi logo
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Plant Extracts News > Laser-Capture Microdissection to Study Global Transcriptional Changes During Plant Embryogenesis

    Laser-Capture Microdissection to Study Global Transcriptional Changes During Plant Embryogenesis

    • Last Update: 2020-11-21
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit

    A key objective in the study of plant embryogenesis is to identify genes expressed in temporal and spatial patterns during development, in order to understand transcriptional control mechanisms regulating pattern formation, differentiation and morphogenesis. Mutagenic approaches have proved powerful to identify essential genes, but global, transcriptome-wide analysis of mRNA profiles in cells at different stages of differentiation would allow the identification of changes in the abundance of major classes of transcripts expressed from genes that are known to respond to regulatory signals, such as hormones. Particular classes of transcription factors or other genes might also be discovered to be associated with particular aspects of cell differentiation. This information would allow the construction of models to describe how signalling pathways might modulate transcriptional changes associated with cell differentiation. Previous limitations in tissue accessibility for RNA isolation have been overcome through the use of laser-capture microdissection, which allows cells from different embryonic tissues to be isolated, for RNA isolation, amplification and analysis by either polymerase chain reaction or
    microarray techniques.
    This article is an English version of an article which is originally in the Chinese language on and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent Echemi's opinion. If you have any queries, please write to It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to with relevant evidence.