echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Release of NO from Donor Compounds: A Mathematical Model for Calculation of NO Concentrations in the Presence of Oxygen

    Release of NO from Donor Compounds: A Mathematical Model for Calculation of NO Concentrations in the Presence of Oxygen

    • Last Update: 2020-12-18
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    For studies on the biological role of nitric oxide (NO), especially long-term effects of NO on transcriptional or translational regulation of protein expression, it is desired to expose cells to a well-defined NO concentration over a certain period of time. Application of NO gas or NO solutions does not meet this goal, as it gives rise to relatively high initial-NO concentrations followed by a rapid decline owing to autoxidation. This problem can be avoided using NO-donor compounds, which should be stable in solutions of high or low pH and decompose in a first-order reaction to release stoichiometric amounts of NO after dilution in physiological buffers. Though decomposition of most of the currently available NO donors is not that simple, nucleophilic complexes of NO with amines (NONOates) appear to meet these criteria and release NO in a first-order reaction at physiological pH (
    1
    ). However, owing to the complex third-order kinetics of NO autoxidation, i.e., the fact that the rate of NO autoxidation increases with increasing concentrations of NO (
    2
    ), it is difficult to predict the actual NO concentration at a given time point even in this ideal situation.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.