echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Replacement of "fault cleaners" in the brain. Fudan Pengbo team developed three solutions

    Replacement of "fault cleaners" in the brain. Fudan Pengbo team developed three solutions

    • Last Update: 2020-09-15
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    Small glial cells are a special class of immune cells distributed in the central nervous system, including the brain, spinal cord and retina.
    glial cells act like "cleaners" in the brain, helping to remove "junk" from the central nervous system, such as amyloid proteins closely associated with Alzheimer's disease.
    , however, there has been a lot of scientific evidence in recent years that when these cells fail, such as carrying disease-caused genetic mutations, they change from "cleaners" to "neuron killers" that trigger nerve inflammation.
    it is assumed that genetic therapy could alleviate or even eliminate these diseases by replacing defective genes in small glial cells with functional genes.
    , however, the researchers point out that due to the limitations of viral vectors, current methods make it difficult to manipulate small glial cells throughout the brain, becoming an application bottleneck for gene therapy.
    replacing protosuric glial cells through transplantation of bone marrow cells or exogenetic small glial cells is another treatment idea.
    But results in animal experiments have shown that replacement efficiency is less than 2%, or must be replaced in specific genetically modified animals (and must be replaced early in development), thus limiting the clinical application of such strategies.
    study, Professor Pember led a team that challenged the challenge of small glial cell replacement.
    previous work, they found that when drugs were used to eliminate existing small glial cells, the few remaining small glial cells had amazing potential for self-renewal.
    , on this basis, the team developed three different types of small glial cell replacement schemes.
    the original replacement/transplantation scheme (tBMT and tMT) replacement is inefficient, and the new three options can achieve efficient replacement (Photo Source: Reference 1) Specifically, the researchers first used a drug to efficiently remove small glial cells from the central nervous system of adult mice without causing significant side effects.
    , external bone marrow cells are introduced through bone marrow transplantation.
    These bone marrow cells can enter the brain and differentiate into small glial cell-like cells, replacing more than 92 percent more efficiently in the brain, while in the retina and spinal cord, more than 99 percent and 93 percent of small glial cells are replaced by exogenous cells, respectively.
    this option replaced the original small glial cells with bone marrow transplants with extremely high replacement effects, so the researchers named them mrBMT (microglia replacement by bone marrow transplantation).
    Taking into account that the donor cells used by mrBMT are bone marrow cells, and that bone marrow cells are donated from very limited sources, the Pember team has further developed a second small glial cell replacement solution to induce differentiation into small glial cell-like cells with easier access and a longer number of blood cells.
    the program, named mrPB (microglia replace by permite blood), is also more than 80% efficient in replacing native glial cells.
    In certain cases, patients may only need to replace faulty glial cells in specific areas of the brain, without involving other brain regions, so in the third option, mrMT, the researchers transplanted normal glial cells from an external source to a specific local brain region to replace the faulty cells.
    in contrast, the small glial cells produced by mrBMT and mrPB were still nuanced from normal small glial cells, while in the third scenario, the transplanted cells retained the characteristics of small glial cells completely. The
    team concluded that these three new small glial cell replacement options are the first to effectively replace small glial cells within the central nervous system or specific brain regions, and the first to achieve large-scale cell transplantation within the central nervous system.
    " have their own advantages and limitations, but each is more suitable for different scenarios.
    all three options will open up new avenues for treating neurological diseases associated with small glial cells, " says Professor Pember.
    " References: ( 1 ) Zhen Xu et al., (2020) Efficient strategies for microglia in the central nervous system. Cell Reports. DOI: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retrieved Aug. 12, 2020, from.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.