echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Summary: Illumina's Solexa Sequencing Technology

    Summary: Illumina's Solexa Sequencing Technology

    • Last Update: 2020-10-25
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com

    Here I present a brief overview of Solexa's sequencing-by-synthesis chemistry. The sample prep methods used differ slightly from that used in ABI's SOLiD system, but the basic goals are the same: generate large numbers of unique "polonies" (polymerase generated colonies) that can be simultaneously sequenced. These parallel reactions occur on the surface of a "flow cell" (basically a water-tight microscope slide) which provides a large surface area for many thousands of parallel chemical reactions.
    Step 1: Sample Preparation
    The
    DNA
    sample of interest is sheared to appropriate size (average ~800bp) using a compressed air device known as a nebulizer. The ends of the DNA are polished, and two unique adapters are ligated to the fragments. Ligated fragments of the size range of 150-200bp are isolated via gel extraction and amplified using limited cycles of
    PCR
    .
    Complete detailed protocols for DNA and small RNA library preparation can be found in the documents provided in the attachments to this post. ("dna_libe_prep.pdf" and "rna_libe_small_prep.pdf", respectively). This process is a fairly straightforward multi-step molecular biology process, however there are many pitfalls that can result in skewed results downstream.
    Steps 2-6: Cluster Generation by Bridge Amplification
    In contrast to the 454 and ABI methods which use a bead-based emulsion PCR to generate "polonies", Illumina utilizes a unique "bridged" amplification reaction that occurs on the surface of the flow cell.
    The flow cell surface is coated with single stranded oligonucleotides that correspond to the sequences of the adapters ligated during the sample preparation stage. Single-stranded, adapter-ligated fragments are bound to the surface of the flow cell exposed to reagents for polyermase-based extension. Priming occurs as the free/distal end of a ligated fragment "bridges" to a complementary oligo on the surface.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.