echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Thermodynamical Methods for the Optimization of Lipase-Catalyzed Reactions

    Thermodynamical Methods for the Optimization of Lipase-Catalyzed Reactions

    • Last Update: 2020-12-13
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    A basic insight on different thermodynamical strategies reported for the optimization of lipase-catalyzed reactions is presented. The significance of selecting the appropriate reaction media in order to enhance selectivity and operational stability of enzymes is discussed. From this analysis, the importance of developing thermodynamic strategies for controlling both the reaction kinetics and equilibrium is emphasized. A theoretical model (Conductor-like Screening Model for Realistic Solvation) for calculating thermodynamic properties in fluid phases is proposed as a powerful tool for predicting equilibrium and kinetic behavior in biocatalytic processes.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.