echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Microbiology News > Analytical Ultracentrifugation of Chromatin

    Analytical Ultracentrifugation of Chromatin

    • Last Update: 2021-02-01
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    The ability of analytical ultracentrifugation to elucidate chromatin structure/function relationships originates directly from its capacity to accurately measure key structural properties of complex macromolecular assemblies in solution. Figure 1 schematically illustrates the complex nature of chromatin. Newly replicated
    DNA
    is wrapped around core histone octamers spaced at approx 200 bp intervals to form nucleosomal arrays, which then interact with linker histones and numerous other nonhistone chromosomal proteins to form “chromatin.” Chromatin is conformationally dynamic, undergoing a number of short-range and long-range folding transitions to produce highly condensed interphase chromosomal fibers (Fig. 1 ). For short chromatin fragments studied in vitro, fiber condensation manifests both in the form of intramolecular conformational changes and reversible oligomerization (
    1

    4
    ). In addition, the structure of chromatin fibers and functions such as transcription and replication are irrevocably linked; any given region of a chromosomal fiber can be either functionally active or inactive depending on both its specific complement of chromatin-associated proteins and its overall state of condensation (
    1
    ,
    2
    ). Consequently, to biochemically characterize chromatin structure/function relationships in vitro, one must be able to analyze both the intramolecular conformational dynamics and intermolecular interactions of an exceedingly complex macromolecular assembly (e.g., a 12-mer nucleosomal array containing one H1 molecule per nucleosome consists of >100 proteins and 2400 bp of DNA, has a molecular mass of approx 3.5�10
    6
    D, yet represents only roughly one millionth of an intact eukaryotic chromosome.)
    Fig. 1.
    Schematic illustration of the hierarchical relationships between DNA, chromatin, and interphase chromosomal fibers.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.