echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Assessment of the Role for Rho Family GTPases in NADPH Oxidase Activation

    Assessment of the Role for Rho Family GTPases in NADPH Oxidase Activation

    • Last Update: 2020-11-28
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    Rac, a member of the Rho family small GTPases, plays a crucial role in activation of Nox family NADPH oxidases in animals, enzymes dedicated to production of reactive oxygen species such as superoxide. The phagocyte oxidase Nox2, crucial for microbicidal activity during phagocytosis, is activated in a manner completely dependent on Rac. Rac in the GTP-bound form directly binds to the oxidase activator p67phox, which in turn interacts with Nox2, leading to superoxide production. Rac also participates in activation of the nonphagocytic oxidase Nox1; in this case, GTP-bound Rac functions by interacting with Noxa1, a p67phox-related protein that is required for Nox1 activation. On the other hand, in the presence of either p67phoxor Noxa1, Rac facilitates superoxide production by Nox3, which is responsible in the inner ear for formation of otoconia, tiny mineralized structures that are required for sensing balance and gravity. All the three mammalian homologs of Rac (Rac1, Rac2, and Rac3), but not Cdc42 or RhoA, are capable of serving as an activator of Nox1–3. Here, we describe methods for the assay of Rac binding to p67phoxand Noxa1 and for the reconstitution of Rac-dependent Nox activity in cell-free and whole-cell systems.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.