echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Biotechnology News > Dioxygen-Dependent Metabolism of Nitric Oxide

    Dioxygen-Dependent Metabolism of Nitric Oxide

    • Last Update: 2021-03-03
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com

    Nitric oxide (NO) serves critical signaling, energetic, and toxic functions throughout the biosphere. NO steady-state levels and functions are controlled in part by NO metabolism or degradation. Dioxygen-dependent NO dioxygenases (EC 1.14.12.17) and dioxygen-independent NO reductases (EC 1.7.99.7) are being identified as major routes for NO metabolism in various life forms. Here we describe the use of the Clark-type NO electrode, mechanistic inhibitors, and nitrate/nitrite assays to measure, characterize, and identify major NO metabolic pathways and enzymes in bacteria, fungi, plants, mammalian cells, and organelles. The methods may prove to be particularly useful for mechanistic investigations and the development of inhibitors, inducers, and other novel NO-modulating therapeutics.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.