echemi logo
Product
  • Product
  • Supplier
  • Inquiry
    Home > Biochemistry News > Microbiology News > Genomic DNA Affinity Chromatography: A Technique to Isolate Interferon-Inducible DNA Binding Factors

    Genomic DNA Affinity Chromatography: A Technique to Isolate Interferon-Inducible DNA Binding Factors

    • Last Update: 2021-01-31
    • Source: Internet
    • Author: User
    Search more information of high quality chemicals, good prices and reliable suppliers, visit www.echemi.com
    Cytokines elicit responses in target cells by inducing changes in gene expression. For interferons (IFNs), this involves receptor-mediated activation of specific transcription factors, which then translocate into the nucleus to bind to cognate gene elements in the promoters of IFN-inducible genes. The prototypic IFN-inducible transcription factors are the signal transducer and activator of transcription (STAT) proteins. IFN-receptor interactions invoke Janus kinase activation via phosphorylation events, which in turn leads to the recruitment and phosphorylation of STAT proteins on tyrosine residues. Activated STATs then dimerize to form STAT complexes. IFNs-α/β will activate STAT-1, STAT-2, STAT-3 ,and STAT-5, whereas IFN-γ will predominantly activate STAT-1. In this chapter, we describe a procedure to identify IFN-inducible deoxyribonucleic acid (
    DNA
    ) binding factors independently of any knowledge of their target DNA sequences. This procedure permits the identification of IFN-inducible STAT complexes as well as any other IFN-inducible DNA binding factors. This biochemical technique uses genomic DNA affinity chromatography to isolate DNA binding factors from IFN-inducible cytoplasmic or nuclear extracts.
    This article is an English version of an article which is originally in the Chinese language on echemi.com and is provided for information purposes only. This website makes no representation or warranty of any kind, either expressed or implied, as to the accuracy, completeness ownership or reliability of the article or any translations thereof. If you have any concerns or complaints relating to the article, please send an email, providing a detailed description of the concern or complaint, to service@echemi.com. A staff member will contact you within 5 working days. Once verified, infringing content will be removed immediately.

    Contact Us

    The source of this page with content of products and services is from Internet, which doesn't represent ECHEMI's opinion. If you have any queries, please write to service@echemi.com. It will be replied within 5 days.

    Moreover, if you find any instances of plagiarism from the page, please send email to service@echemi.com with relevant evidence.